/* Author: Mike Adair madairATdmsolutions.ca Richard Greenwood rich@greenwoodmap.com License: LGPL as per: http://www.gnu.org/copyleft/lesser.html $Id: Proj.js 2956 2007-07-09 12:17:52Z steven $ */ /** * Namespace: Proj4js * * Proj4js is a JavaScript library to transform point coordinates from one * coordinate system to another, including datum transformations. * * This library is a port of both the Proj.4 and GCTCP C libraries to JavaScript. * Enabling these transformations in the browser allows geographic data stored * in different projections to be combined in browser-based web mapping * applications. * * Proj4js must have access to coordinate system initialization strings (which * are the same as for PROJ.4 command line). Thes can be included in your * application using a def is a CS definition in PROJ.4 WKT format, for example: +proj="tmerc" //longlat, etc. +a=majorRadius +b=minorRadius +lat0=somenumber +long=somenumber */ Proj4js.defs = { // These are so widely used, we'll go ahead and throw them in // without requiring a separate .js file 'WGS84': "+title=long/lat:WGS84 +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees", 'EPSG:4326': "+title=long/lat:WGS84 +proj=longlat +a=6378137.0 +b=6356752.31424518 +ellps=WGS84 +datum=WGS84 +units=degrees", 'EPSG:4269': "+title=long/lat:NAD83 +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees", 'EPSG:3875': "+title= Google Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs" }; Proj4js.defs['EPSG:3785'] = Proj4js.defs['EPSG:3875']; //maintain backward compat, official code is 3875 Proj4js.defs['GOOGLE'] = Proj4js.defs['EPSG:3875']; Proj4js.defs['EPSG:900913'] = Proj4js.defs['EPSG:3875']; Proj4js.defs['EPSG:102113'] = Proj4js.defs['EPSG:3875']; Proj4js.common = { PI : 3.141592653589793238, //Math.PI, HALF_PI : 1.570796326794896619, //Math.PI*0.5, TWO_PI : 6.283185307179586477, //Math.PI*2, FORTPI : 0.78539816339744833, R2D : 57.29577951308232088, D2R : 0.01745329251994329577, SEC_TO_RAD : 4.84813681109535993589914102357e-6, /* SEC_TO_RAD = Pi/180/3600 */ EPSLN : 1.0e-10, MAX_ITER : 20, // following constants from geocent.c COS_67P5 : 0.38268343236508977, /* cosine of 67.5 degrees */ AD_C : 1.0026000, /* Toms region 1 constant */ /* datum_type values */ PJD_UNKNOWN : 0, PJD_3PARAM : 1, PJD_7PARAM : 2, PJD_GRIDSHIFT: 3, PJD_WGS84 : 4, // WGS84 or equivalent PJD_NODATUM : 5, // WGS84 or equivalent SRS_WGS84_SEMIMAJOR : 6378137.0, // only used in grid shift transforms // ellipoid pj_set_ell.c SIXTH : .1666666666666666667, /* 1/6 */ RA4 : .04722222222222222222, /* 17/360 */ RA6 : .02215608465608465608, /* 67/3024 */ RV4 : .06944444444444444444, /* 5/72 */ RV6 : .04243827160493827160, /* 55/1296 */ // Function to compute the constant small m which is the radius of // a parallel of latitude, phi, divided by the semimajor axis. // ----------------------------------------------------------------- msfnz : function(eccent, sinphi, cosphi) { var con = eccent * sinphi; return cosphi/(Math.sqrt(1.0 - con * con)); }, // Function to compute the constant small t for use in the forward // computations in the Lambert Conformal Conic and the Polar // Stereographic projections. // ----------------------------------------------------------------- tsfnz : function(eccent, phi, sinphi) { var con = eccent * sinphi; var com = .5 * eccent; con = Math.pow(((1.0 - con) / (1.0 + con)), com); return (Math.tan(.5 * (this.HALF_PI - phi))/con); }, // Function to compute the latitude angle, phi2, for the inverse of the // Lambert Conformal Conic and Polar Stereographic projections. // ---------------------------------------------------------------- phi2z : function(eccent, ts) { var eccnth = .5 * eccent; var con, dphi; var phi = this.HALF_PI - 2 * Math.atan(ts); for (var i = 0; i <= 15; i++) { con = eccent * Math.sin(phi); dphi = this.HALF_PI - 2 * Math.atan(ts *(Math.pow(((1.0 - con)/(1.0 + con)),eccnth))) - phi; phi += dphi; if (Math.abs(dphi) <= .0000000001) return phi; } alert("phi2z has NoConvergence"); return (-9999); }, /* Function to compute constant small q which is the radius of a parallel of latitude, phi, divided by the semimajor axis. ------------------------------------------------------------*/ qsfnz : function(eccent,sinphi) { var con; if (eccent > 1.0e-7) { con = eccent * sinphi; return (( 1.0- eccent * eccent) * (sinphi /(1.0 - con * con) - (.5/eccent)*Math.log((1.0 - con)/(1.0 + con)))); } else { return(2.0 * sinphi); } }, /* Function to eliminate roundoff errors in asin ----------------------------------------------*/ asinz : function(x) { if (Math.abs(x)>1.0) { x=(x>1.0)?1.0:-1.0; } return Math.asin(x); }, // following functions from gctpc cproj.c for transverse mercator projections e0fn : function(x) {return(1.0-0.25*x*(1.0+x/16.0*(3.0+1.25*x)));}, e1fn : function(x) {return(0.375*x*(1.0+0.25*x*(1.0+0.46875*x)));}, e2fn : function(x) {return(0.05859375*x*x*(1.0+0.75*x));}, e3fn : function(x) {return(x*x*x*(35.0/3072.0));}, mlfn : function(e0,e1,e2,e3,phi) {return(e0*phi-e1*Math.sin(2.0*phi)+e2*Math.sin(4.0*phi)-e3*Math.sin(6.0*phi));}, srat : function(esinp, exp) { return(Math.pow((1.0-esinp)/(1.0+esinp), exp)); }, // Function to return the sign of an argument sign : function(x) { if (x < 0.0) return(-1); else return(1);}, // Function to adjust longitude to -180 to 180; input in radians adjust_lon : function(x) { x = (Math.abs(x) < this.PI) ? x: (x - (this.sign(x)*this.TWO_PI) ); return x; }, // IGNF - DGR : algorithms used by IGN France // Function to adjust latitude to -90 to 90; input in radians adjust_lat : function(x) { x= (Math.abs(x) < this.HALF_PI) ? x: (x - (this.sign(x)*this.PI) ); return x; }, // Latitude Isometrique - close to tsfnz ... latiso : function(eccent, phi, sinphi) { if (Math.abs(phi) > this.HALF_PI) return +Number.NaN; if (phi==this.HALF_PI) return Number.POSITIVE_INFINITY; if (phi==-1.0*this.HALF_PI) return -1.0*Number.POSITIVE_INFINITY; var con= eccent*sinphi; return Math.log(Math.tan((this.HALF_PI+phi)/2.0))+eccent*Math.log((1.0-con)/(1.0+con))/2.0; }, fL : function(x,L) { return 2.0*Math.atan(x*Math.exp(L)) - this.HALF_PI; }, // Inverse Latitude Isometrique - close to ph2z invlatiso : function(eccent, ts) { var phi= this.fL(1.0,ts); var Iphi= 0.0; var con= 0.0; do { Iphi= phi; con= eccent*Math.sin(Iphi); phi= this.fL(Math.exp(eccent*Math.log((1.0+con)/(1.0-con))/2.0),ts) } while (Math.abs(phi-Iphi)>1.0e-12); return phi; }, // Needed for Gauss Schreiber // Original: Denis Makarov (info@binarythings.com) // Web Site: http://www.binarythings.com sinh : function(x) { var r= Math.exp(x); r= (r-1.0/r)/2.0; return r; }, cosh : function(x) { var r= Math.exp(x); r= (r+1.0/r)/2.0; return r; }, tanh : function(x) { var r= Math.exp(x); r= (r-1.0/r)/(r+1.0/r); return r; }, asinh : function(x) { var s= (x>= 0? 1.0:-1.0); return s*(Math.log( Math.abs(x) + Math.sqrt(x*x+1.0) )); }, acosh : function(x) { return 2.0*Math.log(Math.sqrt((x+1.0)/2.0) + Math.sqrt((x-1.0)/2.0)); }, atanh : function(x) { return Math.log((x-1.0)/(x+1.0))/2.0; }, // Grande Normale gN : function(a,e,sinphi) { var temp= e*sinphi; return a/Math.sqrt(1.0 - temp*temp); }, //code from the PROJ.4 pj_mlfn.c file; this may be useful for other projections pj_enfn: function(es) { var en = new Array(); en[0] = this.C00 - es * (this.C02 + es * (this.C04 + es * (this.C06 + es * this.C08))); en[1] = es * (this.C22 - es * (this.C04 + es * (this.C06 + es * this.C08))); var t = es * es; en[2] = t * (this.C44 - es * (this.C46 + es * this.C48)); t *= es; en[3] = t * (this.C66 - es * this.C68); en[4] = t * es * this.C88; return en; }, pj_mlfn: function(phi, sphi, cphi, en) { cphi *= sphi; sphi *= sphi; return(en[0] * phi - cphi * (en[1] + sphi*(en[2]+ sphi*(en[3] + sphi*en[4])))); }, pj_inv_mlfn: function(arg, es, en) { var k = 1./(1.-es); var phi = arg; for (var i = Proj4js.common.MAX_ITER; i ; --i) { /* rarely goes over 2 iterations */ var s = Math.sin(phi); var t = 1. - es * s * s; //t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg; //phi -= t * (t * Math.sqrt(t)) * k; t = (this.pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k; phi -= t; if (Math.abs(t) < Proj4js.common.EPSLN) return phi; } Proj4js.reportError("cass:pj_inv_mlfn: Convergence error"); return phi; }, /* meridinal distance for ellipsoid and inverse ** 8th degree - accurate to < 1e-5 meters when used in conjuction ** with typical major axis values. ** Inverse determines phi to EPS (1e-11) radians, about 1e-6 seconds. */ C00: 1.0, C02: .25, C04: .046875, C06: .01953125, C08: .01068115234375, C22: .75, C44: .46875, C46: .01302083333333333333, C48: .00712076822916666666, C66: .36458333333333333333, C68: .00569661458333333333, C88: .3076171875 }; /** datum object */ Proj4js.datum = Proj4js.Class({ initialize : function(proj) { this.datum_type = Proj4js.common.PJD_WGS84; //default setting if (proj.datumCode && proj.datumCode == 'none') { this.datum_type = Proj4js.common.PJD_NODATUM; } if (proj && proj.datum_params) { for (var i=0; i 3) { if (proj.datum_params[3] != 0 || proj.datum_params[4] != 0 || proj.datum_params[5] != 0 || proj.datum_params[6] != 0 ) { this.datum_type = Proj4js.common.PJD_7PARAM; proj.datum_params[3] *= Proj4js.common.SEC_TO_RAD; proj.datum_params[4] *= Proj4js.common.SEC_TO_RAD; proj.datum_params[5] *= Proj4js.common.SEC_TO_RAD; proj.datum_params[6] = (proj.datum_params[6]/1000000.0) + 1.0; } } } if (proj) { this.a = proj.a; //datum object also uses these values this.b = proj.b; this.es = proj.es; this.ep2 = proj.ep2; this.datum_params = proj.datum_params; } }, /****************************************************************/ // cs_compare_datums() // Returns TRUE if the two datums match, otherwise FALSE. compare_datums : function( dest ) { if( this.datum_type != dest.datum_type ) { return false; // false, datums are not equal } else if( this.a != dest.a || Math.abs(this.es-dest.es) > 0.000000000050 ) { // the tolerence for es is to ensure that GRS80 and WGS84 // are considered identical return false; } else if( this.datum_type == Proj4js.common.PJD_3PARAM ) { return (this.datum_params[0] == dest.datum_params[0] && this.datum_params[1] == dest.datum_params[1] && this.datum_params[2] == dest.datum_params[2]); } else if( this.datum_type == Proj4js.common.PJD_7PARAM ) { return (this.datum_params[0] == dest.datum_params[0] && this.datum_params[1] == dest.datum_params[1] && this.datum_params[2] == dest.datum_params[2] && this.datum_params[3] == dest.datum_params[3] && this.datum_params[4] == dest.datum_params[4] && this.datum_params[5] == dest.datum_params[5] && this.datum_params[6] == dest.datum_params[6]); } else if ( this.datum_type == Proj4js.common.PJD_GRIDSHIFT || dest.datum_type == Proj4js.common.PJD_GRIDSHIFT ) { alert("ERROR: Grid shift transformations are not implemented."); return false } else { return true; // datums are equal } }, // cs_compare_datums() /* * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z), * according to the current ellipsoid parameters. * * Latitude : Geodetic latitude in radians (input) * Longitude : Geodetic longitude in radians (input) * Height : Geodetic height, in meters (input) * X : Calculated Geocentric X coordinate, in meters (output) * Y : Calculated Geocentric Y coordinate, in meters (output) * Z : Calculated Geocentric Z coordinate, in meters (output) * */ geodetic_to_geocentric : function(p) { var Longitude = p.x; var Latitude = p.y; var Height = p.z ? p.z : 0; //Z value not always supplied var X; // output var Y; var Z; var Error_Code=0; // GEOCENT_NO_ERROR; var Rn; /* Earth radius at location */ var Sin_Lat; /* Math.sin(Latitude) */ var Sin2_Lat; /* Square of Math.sin(Latitude) */ var Cos_Lat; /* Math.cos(Latitude) */ /* ** Don't blow up if Latitude is just a little out of the value ** range as it may just be a rounding issue. Also removed longitude ** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001. */ if( Latitude < -Proj4js.common.HALF_PI && Latitude > -1.001 * Proj4js.common.HALF_PI ) { Latitude = -Proj4js.common.HALF_PI; } else if( Latitude > Proj4js.common.HALF_PI && Latitude < 1.001 * Proj4js.common.HALF_PI ) { Latitude = Proj4js.common.HALF_PI; } else if ((Latitude < -Proj4js.common.HALF_PI) || (Latitude > Proj4js.common.HALF_PI)) { /* Latitude out of range */ Proj4js.reportError('geocent:lat out of range:'+Latitude); return null; } if (Longitude > Proj4js.common.PI) Longitude -= (2*Proj4js.common.PI); Sin_Lat = Math.sin(Latitude); Cos_Lat = Math.cos(Latitude); Sin2_Lat = Sin_Lat * Sin_Lat; Rn = this.a / (Math.sqrt(1.0e0 - this.es * Sin2_Lat)); X = (Rn + Height) * Cos_Lat * Math.cos(Longitude); Y = (Rn + Height) * Cos_Lat * Math.sin(Longitude); Z = ((Rn * (1 - this.es)) + Height) * Sin_Lat; p.x = X; p.y = Y; p.z = Z; return Error_Code; }, // cs_geodetic_to_geocentric() geocentric_to_geodetic : function (p) { /* local defintions and variables */ /* end-criterium of loop, accuracy of sin(Latitude) */ var genau = 1.E-12; var genau2 = (genau*genau); var maxiter = 30; var P; /* distance between semi-minor axis and location */ var RR; /* distance between center and location */ var CT; /* sin of geocentric latitude */ var ST; /* cos of geocentric latitude */ var RX; var RK; var RN; /* Earth radius at location */ var CPHI0; /* cos of start or old geodetic latitude in iterations */ var SPHI0; /* sin of start or old geodetic latitude in iterations */ var CPHI; /* cos of searched geodetic latitude */ var SPHI; /* sin of searched geodetic latitude */ var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */ var At_Pole; /* indicates location is in polar region */ var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */ var X = p.x; var Y = p.y; var Z = p.z ? p.z : 0.0; //Z value not always supplied var Longitude; var Latitude; var Height; At_Pole = false; P = Math.sqrt(X*X+Y*Y); RR = Math.sqrt(X*X+Y*Y+Z*Z); /* special cases for latitude and longitude */ if (P/this.a < genau) { /* special case, if P=0. (X=0., Y=0.) */ At_Pole = true; Longitude = 0.0; /* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis * of ellipsoid (=center of mass), Latitude becomes PI/2 */ if (RR/this.a < genau) { Latitude = Proj4js.common.HALF_PI; Height = -this.b; return; } } else { /* ellipsoidal (geodetic) longitude * interval: -PI < Longitude <= +PI */ Longitude=Math.atan2(Y,X); } /* -------------------------------------------------------------- * Following iterative algorithm was developped by * "Institut f�r Erdmessung", University of Hannover, July 1988. * Internet: www.ife.uni-hannover.de * Iterative computation of CPHI,SPHI and Height. * Iteration of CPHI and SPHI to 10**-12 radian resp. * 2*10**-7 arcsec. * -------------------------------------------------------------- */ CT = Z/RR; ST = P/RR; RX = 1.0/Math.sqrt(1.0-this.es*(2.0-this.es)*ST*ST); CPHI0 = ST*(1.0-this.es)*RX; SPHI0 = CT*RX; iter = 0; /* loop to find sin(Latitude) resp. Latitude * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */ do { iter++; RN = this.a/Math.sqrt(1.0-this.es*SPHI0*SPHI0); /* ellipsoidal (geodetic) height */ Height = P*CPHI0+Z*SPHI0-RN*(1.0-this.es*SPHI0*SPHI0); RK = this.es*RN/(RN+Height); RX = 1.0/Math.sqrt(1.0-RK*(2.0-RK)*ST*ST); CPHI = ST*(1.0-RK)*RX; SPHI = CT*RX; SDPHI = SPHI*CPHI0-CPHI*SPHI0; CPHI0 = CPHI; SPHI0 = SPHI; } while (SDPHI*SDPHI > genau2 && iter < maxiter); /* ellipsoidal (geodetic) latitude */ Latitude=Math.atan(SPHI/Math.abs(CPHI)); p.x = Longitude; p.y = Latitude; p.z = Height; return p; }, // cs_geocentric_to_geodetic() /** Convert_Geocentric_To_Geodetic * The method used here is derived from 'An Improved Algorithm for * Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996 */ geocentric_to_geodetic_noniter : function (p) { var X = p.x; var Y = p.y; var Z = p.z ? p.z : 0; //Z value not always supplied var Longitude; var Latitude; var Height; var W; /* distance from Z axis */ var W2; /* square of distance from Z axis */ var T0; /* initial estimate of vertical component */ var T1; /* corrected estimate of vertical component */ var S0; /* initial estimate of horizontal component */ var S1; /* corrected estimate of horizontal component */ var Sin_B0; /* Math.sin(B0), B0 is estimate of Bowring aux variable */ var Sin3_B0; /* cube of Math.sin(B0) */ var Cos_B0; /* Math.cos(B0) */ var Sin_p1; /* Math.sin(phi1), phi1 is estimated latitude */ var Cos_p1; /* Math.cos(phi1) */ var Rn; /* Earth radius at location */ var Sum; /* numerator of Math.cos(phi1) */ var At_Pole; /* indicates location is in polar region */ X = parseFloat(X); // cast from string to float Y = parseFloat(Y); Z = parseFloat(Z); At_Pole = false; if (X != 0.0) { Longitude = Math.atan2(Y,X); } else { if (Y > 0) { Longitude = Proj4js.common.HALF_PI; } else if (Y < 0) { Longitude = -Proj4js.common.HALF_PI; } else { At_Pole = true; Longitude = 0.0; if (Z > 0.0) { /* north pole */ Latitude = Proj4js.common.HALF_PI; } else if (Z < 0.0) { /* south pole */ Latitude = -Proj4js.common.HALF_PI; } else { /* center of earth */ Latitude = Proj4js.common.HALF_PI; Height = -this.b; return; } } } W2 = X*X + Y*Y; W = Math.sqrt(W2); T0 = Z * Proj4js.common.AD_C; S0 = Math.sqrt(T0 * T0 + W2); Sin_B0 = T0 / S0; Cos_B0 = W / S0; Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0; T1 = Z + this.b * this.ep2 * Sin3_B0; Sum = W - this.a * this.es * Cos_B0 * Cos_B0 * Cos_B0; S1 = Math.sqrt(T1*T1 + Sum * Sum); Sin_p1 = T1 / S1; Cos_p1 = Sum / S1; Rn = this.a / Math.sqrt(1.0 - this.es * Sin_p1 * Sin_p1); if (Cos_p1 >= Proj4js.common.COS_67P5) { Height = W / Cos_p1 - Rn; } else if (Cos_p1 <= -Proj4js.common.COS_67P5) { Height = W / -Cos_p1 - Rn; } else { Height = Z / Sin_p1 + Rn * (this.es - 1.0); } if (At_Pole == false) { Latitude = Math.atan(Sin_p1 / Cos_p1); } p.x = Longitude; p.y = Latitude; p.z = Height; return p; }, // geocentric_to_geodetic_noniter() /****************************************************************/ // pj_geocentic_to_wgs84( p ) // p = point to transform in geocentric coordinates (x,y,z) geocentric_to_wgs84 : function ( p ) { if( this.datum_type == Proj4js.common.PJD_3PARAM ) { // if( x[io] == HUGE_VAL ) // continue; p.x += this.datum_params[0]; p.y += this.datum_params[1]; p.z += this.datum_params[2]; } else if (this.datum_type == Proj4js.common.PJD_7PARAM) { var Dx_BF =this.datum_params[0]; var Dy_BF =this.datum_params[1]; var Dz_BF =this.datum_params[2]; var Rx_BF =this.datum_params[3]; var Ry_BF =this.datum_params[4]; var Rz_BF =this.datum_params[5]; var M_BF =this.datum_params[6]; // if( x[io] == HUGE_VAL ) // continue; var x_out = M_BF*( p.x - Rz_BF*p.y + Ry_BF*p.z) + Dx_BF; var y_out = M_BF*( Rz_BF*p.x + p.y - Rx_BF*p.z) + Dy_BF; var z_out = M_BF*(-Ry_BF*p.x + Rx_BF*p.y + p.z) + Dz_BF; p.x = x_out; p.y = y_out; p.z = z_out; } }, // cs_geocentric_to_wgs84 /****************************************************************/ // pj_geocentic_from_wgs84() // coordinate system definition, // point to transform in geocentric coordinates (x,y,z) geocentric_from_wgs84 : function( p ) { if( this.datum_type == Proj4js.common.PJD_3PARAM ) { //if( x[io] == HUGE_VAL ) // continue; p.x -= this.datum_params[0]; p.y -= this.datum_params[1]; p.z -= this.datum_params[2]; } else if (this.datum_type == Proj4js.common.PJD_7PARAM) { var Dx_BF =this.datum_params[0]; var Dy_BF =this.datum_params[1]; var Dz_BF =this.datum_params[2]; var Rx_BF =this.datum_params[3]; var Ry_BF =this.datum_params[4]; var Rz_BF =this.datum_params[5]; var M_BF =this.datum_params[6]; var x_tmp = (p.x - Dx_BF) / M_BF; var y_tmp = (p.y - Dy_BF) / M_BF; var z_tmp = (p.z - Dz_BF) / M_BF; //if( x[io] == HUGE_VAL ) // continue; p.x = x_tmp + Rz_BF*y_tmp - Ry_BF*z_tmp; p.y = -Rz_BF*x_tmp + y_tmp + Rx_BF*z_tmp; p.z = Ry_BF*x_tmp - Rx_BF*y_tmp + z_tmp; } //cs_geocentric_from_wgs84() } }); /** point object, nothing fancy, just allows values to be passed back and forth by reference rather than by value. Other point classes may be used as long as they have x and y properties, which will get modified in the transform method. */ Proj4js.Point = Proj4js.Class({ /** * Constructor: Proj4js.Point * * Parameters: * - x {float} or {Array} either the first coordinates component or * the full coordinates * - y {float} the second component * - z {float} the third component, optional. */ initialize : function(x,y,z) { if (typeof x == 'object') { this.x = x[0]; this.y = x[1]; this.z = x[2] || 0.0; } else if (typeof x == 'string' && typeof y == 'undefined') { var coords = x.split(','); this.x = parseFloat(coords[0]); this.y = parseFloat(coords[1]); this.z = parseFloat(coords[2]) || 0.0; } else { this.x = x; this.y = y; this.z = z || 0.0; } }, /** * APIMethod: clone * Build a copy of a Proj4js.Point object. * * Return: * {Proj4js}.Point the cloned point. */ clone : function() { return new Proj4js.Point(this.x, this.y, this.z); }, /** * APIMethod: toString * Return a readable string version of the point * * Return: * {String} String representation of Proj4js.Point object. * (ex. "x=5,y=42") */ toString : function() { return ("x=" + this.x + ",y=" + this.y); }, /** * APIMethod: toShortString * Return a short string version of the point. * * Return: * {String} Shortened String representation of Proj4js.Point object. * (ex. "5, 42") */ toShortString : function() { return (this.x + ", " + this.y); } }); Proj4js.PrimeMeridian = { "greenwich": 0.0, //"0dE", "lisbon": -9.131906111111, //"9d07'54.862\"W", "paris": 2.337229166667, //"2d20'14.025\"E", "bogota": -74.080916666667, //"74d04'51.3\"W", "madrid": -3.687938888889, //"3d41'16.58\"W", "rome": 12.452333333333, //"12d27'8.4\"E", "bern": 7.439583333333, //"7d26'22.5\"E", "jakarta": 106.807719444444, //"106d48'27.79\"E", "ferro": -17.666666666667, //"17d40'W", "brussels": 4.367975, //"4d22'4.71\"E", "stockholm": 18.058277777778, //"18d3'29.8\"E", "athens": 23.7163375, //"23d42'58.815\"E", "oslo": 10.722916666667 //"10d43'22.5\"E" }; Proj4js.Ellipsoid = { "MERIT": {a:6378137.0, rf:298.257, ellipseName:"MERIT 1983"}, "SGS85": {a:6378136.0, rf:298.257, ellipseName:"Soviet Geodetic System 85"}, "GRS80": {a:6378137.0, rf:298.257222101, ellipseName:"GRS 1980(IUGG, 1980)"}, "IAU76": {a:6378140.0, rf:298.257, ellipseName:"IAU 1976"}, "airy": {a:6377563.396, b:6356256.910, ellipseName:"Airy 1830"}, "APL4.": {a:6378137, rf:298.25, ellipseName:"Appl. Physics. 1965"}, "NWL9D": {a:6378145.0, rf:298.25, ellipseName:"Naval Weapons Lab., 1965"}, "mod_airy": {a:6377340.189, b:6356034.446, ellipseName:"Modified Airy"}, "andrae": {a:6377104.43, rf:300.0, ellipseName:"Andrae 1876 (Den., Iclnd.)"}, "aust_SA": {a:6378160.0, rf:298.25, ellipseName:"Australian Natl & S. Amer. 1969"}, "GRS67": {a:6378160.0, rf:298.2471674270, ellipseName:"GRS 67(IUGG 1967)"}, "bessel": {a:6377397.155, rf:299.1528128, ellipseName:"Bessel 1841"}, "bess_nam": {a:6377483.865, rf:299.1528128, ellipseName:"Bessel 1841 (Namibia)"}, "clrk66": {a:6378206.4, b:6356583.8, ellipseName:"Clarke 1866"}, "clrk80": {a:6378249.145, rf:293.4663, ellipseName:"Clarke 1880 mod."}, "CPM": {a:6375738.7, rf:334.29, ellipseName:"Comm. des Poids et Mesures 1799"}, "delmbr": {a:6376428.0, rf:311.5, ellipseName:"Delambre 1810 (Belgium)"}, "engelis": {a:6378136.05, rf:298.2566, ellipseName:"Engelis 1985"}, "evrst30": {a:6377276.345, rf:300.8017, ellipseName:"Everest 1830"}, "evrst48": {a:6377304.063, rf:300.8017, ellipseName:"Everest 1948"}, "evrst56": {a:6377301.243, rf:300.8017, ellipseName:"Everest 1956"}, "evrst69": {a:6377295.664, rf:300.8017, ellipseName:"Everest 1969"}, "evrstSS": {a:6377298.556, rf:300.8017, ellipseName:"Everest (Sabah & Sarawak)"}, "fschr60": {a:6378166.0, rf:298.3, ellipseName:"Fischer (Mercury Datum) 1960"}, "fschr60m": {a:6378155.0, rf:298.3, ellipseName:"Fischer 1960"}, "fschr68": {a:6378150.0, rf:298.3, ellipseName:"Fischer 1968"}, "helmert": {a:6378200.0, rf:298.3, ellipseName:"Helmert 1906"}, "hough": {a:6378270.0, rf:297.0, ellipseName:"Hough"}, "intl": {a:6378388.0, rf:297.0, ellipseName:"International 1909 (Hayford)"}, "kaula": {a:6378163.0, rf:298.24, ellipseName:"Kaula 1961"}, "lerch": {a:6378139.0, rf:298.257, ellipseName:"Lerch 1979"}, "mprts": {a:6397300.0, rf:191.0, ellipseName:"Maupertius 1738"}, "new_intl": {a:6378157.5, b:6356772.2, ellipseName:"New International 1967"}, "plessis": {a:6376523.0, rf:6355863.0, ellipseName:"Plessis 1817 (France)"}, "krass": {a:6378245.0, rf:298.3, ellipseName:"Krassovsky, 1942"}, "SEasia": {a:6378155.0, b:6356773.3205, ellipseName:"Southeast Asia"}, "walbeck": {a:6376896.0, b:6355834.8467, ellipseName:"Walbeck"}, "WGS60": {a:6378165.0, rf:298.3, ellipseName:"WGS 60"}, "WGS66": {a:6378145.0, rf:298.25, ellipseName:"WGS 66"}, "WGS72": {a:6378135.0, rf:298.26, ellipseName:"WGS 72"}, "WGS84": {a:6378137.0, rf:298.257223563, ellipseName:"WGS 84"}, "sphere": {a:6370997.0, b:6370997.0, ellipseName:"Normal Sphere (r=6370997)"} }; Proj4js.Datum = { "WGS84": {towgs84: "0,0,0", ellipse: "WGS84", datumName: "WGS84"}, "GGRS87": {towgs84: "-199.87,74.79,246.62", ellipse: "GRS80", datumName: "Greek_Geodetic_Reference_System_1987"}, "NAD83": {towgs84: "0,0,0", ellipse: "GRS80", datumName: "North_American_Datum_1983"}, "NAD27": {nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat", ellipse: "clrk66", datumName: "North_American_Datum_1927"}, "potsdam": {towgs84: "606.0,23.0,413.0", ellipse: "bessel", datumName: "Potsdam Rauenberg 1950 DHDN"}, "carthage": {towgs84: "-263.0,6.0,431.0", ellipse: "clark80", datumName: "Carthage 1934 Tunisia"}, "hermannskogel": {towgs84: "653.0,-212.0,449.0", ellipse: "bessel", datumName: "Hermannskogel"}, "ire65": {towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15", ellipse: "mod_airy", datumName: "Ireland 1965"}, "nzgd49": {towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993", ellipse: "intl", datumName: "New Zealand Geodetic Datum 1949"}, "OSGB36": {towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894", ellipse: "airy", datumName: "Airy 1830"} }; Proj4js.WGS84 = new Proj4js.Proj('WGS84'); Proj4js.Datum['OSB36'] = Proj4js.Datum['OSGB36']; //as returned from spatialreference.org //lookup table to go from the projection name in WKT to the Proj4js projection name //build this out as required Proj4js.wktProjections = { "Lambert Tangential Conformal Conic Projection": "lcc", "Mercator": "merc", "Popular Visualisation Pseudo Mercator": "merc", "Mercator_1SP": "merc", "Transverse_Mercator": "tmerc", "Transverse Mercator": "tmerc", "Lambert Azimuthal Equal Area": "laea", "Universal Transverse Mercator System": "utm" };